Suppose all of the surface area of the large cubes you have been given is painted blue. How many small cubes would have 3 faces painted, 2 faces painted, 1 face painted, no faces painted?

Record your results in the following table.

Size Of cube	Number of faces painted				Total number of sall cubes needed
	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	8
$3 \times 3 \times 3$		0	0	0	8
$4 \times 4 \times 4$			24		
$5 \times 5 \times 5$				27	
$6 \times 6 \times 6$					216

Without using any cubes can you complete the table for a $10 \times 10 \times 10$ cube? Show your workings below.

$10 \times 10 \times 10$				

Can you explain why there are always 8 small cubes with 3 painted faces no matter how big your large cube is?

What do you notice about the number of small cubes with 2 painted faces as the large cube increases in size?

Is there a relationship between the number of faces on any cube and the number of small cubes with one painted face? Show your working and describe what you find.

Each small cube represents 1 Cubic Centimetre in volume. Using this information complete the following table to show the volume of each of the large cubes.

Size of cube	Volume
$2 \times 2 \times 2$	
$3 \times 3 \times 3$	
$4 \times 4 \times 4$	
$5 \times 5 \times 5$	
$6 \times 6 \times 6$	
$10 \times 10 \times 10$	

Describe how you worked out the volume of the cubes?

